q^2-7q-18=0

Simple and best practice solution for q^2-7q-18=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for q^2-7q-18=0 equation:



q^2-7q-18=0
a = 1; b = -7; c = -18;
Δ = b2-4ac
Δ = -72-4·1·(-18)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-11}{2*1}=\frac{-4}{2} =-2 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+11}{2*1}=\frac{18}{2} =9 $

See similar equations:

| -7=16x-9x | | n+1/4=13/8 | | 10x+5x=-6x | | (14-1/8w)=(3/4w-21) | | 4x+10-2x=24 | | -6v-18=3(v+6) | | 6q^2-3q=5q^2-9q+16 | | 2x+30=5x+9= | | -216+23×=134+9x | | -h+2=2h+1 | | 3x+42=99 | | g2−1=1 | | x+15=3x+x=180 | | -79+5x=8x+74 | | x+15=3x+x | | 11q+10=10 | | g2− 1=1 | | -2p=5p=14-5p | | 5x–7=-10x+8 | | 84+8x=320 | | 2q+12=18 | | 4c+11-c=50 | | h+6=4h | | 20x-18=18x+38 | | 4.6+1.2x=xx2 | | r-5.2=1.4 | | 2m^2-22m-53=0 | | (x/5)=2.3 | | 12x-222=97+x | | 1-2h=-h-7 | | (12-2x)(20-2x)=48 | | 2n+5=7n-10 |

Equations solver categories